Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Primates ; 65(3): 151-157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446367

RESUMO

For nonhuman primates living in anthropogenic areas, predation by larger predators is relatively rare. However, smaller predators, such as free-ranging as well as domesticated dogs, can shape the socioecology of urban nonhuman primates, either directly by attacking and killing them or indirectly by modifying their activity patterns. Here, we describe three (two probably fatal) cases of dog attacks on adult rhesus macaques inhabiting an anthropogenic landscape in Northern India and the circumstances surrounding these incidents. We discuss the importance of considering human presence and intervention in dog-nonhuman primate relationships while studying nonhuman primate populations across anthropogenic gradients, and its potential influences on group social dynamics and transmission of zoonotic agents.


Assuntos
Mordeduras e Picadas , Doenças do Cão , Humanos , Animais , Cães , Macaca mulatta , Índia
2.
Zool Res ; 45(2): 299-310, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485500

RESUMO

Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques ( Macaca mulatta, MMU) and crab-eating macaques ( M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from 84 samples (41 MFA samples and 43 MMU samples) encompassing 14 common tissues. Our findings revealed a small fraction of genes (3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover, 19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary, this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.


Assuntos
Genômica , Transcriptoma , Humanos , Animais , Macaca mulatta/genética , Macaca fascicularis/genética , Perfilação da Expressão Gênica/veterinária
3.
Am J Primatol ; 86(5): e23605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342984

RESUMO

Global climate change has transformed predictions of fire seasons in the near future, and record-breaking wildfire events have had catastrophic consequences in recent years. In September 2020, multiple wildfires subjected Oregon to hazardous air quality for several days. In this retrospective cohort study, we aimed to examine prenatal loss, morbidity, and mortality of rhesus (Macaca mulatta) and Japanese macaques (Macaca fuscata) exposed to poor air quality from the nearby wildfires. Detailed medical records from 2014 to 2020 of 580 macaques housed outdoors at a research facility in Beaverton, Oregon were used to evaluate the association between these health outcomes and wildfire smoke exposure. Logistic regression models estimated excess prenatal loss, hospitalization rates, respiratory problems, and mortality during and following the wildfire event, and Kruskal-Wallis statistics were used to determine if infant growth was affected by wildfire smoke exposure. Risk of pregnancy loss (relative risk = 4.1; p < 0.001) and odds of diagnosis with a respiratory problem (odds ratio = 4.47; p = 0.003) were higher in exposed infant macaques compared to nonexposed infants. Infant growth was not affected by poor air quality exposure. Our findings suggest wildfire smoke exposure poses a risk to the health of infants and pregnant individuals and should be monitored more closely in the future.


Assuntos
Fumaça , Incêndios Florestais , Animais , Fumaça/efeitos adversos , Estudos Retrospectivos , Taxa Respiratória , Exposição Ambiental/efeitos adversos , Macaca mulatta , Macaca fuscata
4.
Microbiol Res ; 282: 127633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364524

RESUMO

This study aims to deepen our understanding of the drug resistance and virulence characterization among gut bacteria in asymptomatic and diarrheal captive rhesus macaques (RMs). A total of 31 samples, including 8 asymptomatic RMs, 10 diarrheal RMs, and 1 dead RM, were collected from a breeding base in Sichuan, China, for bacterial isolation. As a result, Escherichia coli (n = 23), Klebsiella (n = 22), Proteus mirabilis (n = 10), Enterococcus (n = 10), Salmonella (n = 2), and Staphylococcus (n = 2) were isolated. All isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing, among which some E. coli, K. pneumoniae, and P. mirabilis were subjected to the Galleria mellonella and mice infection testing. The antimicrobial resistance rates of levofloxacin, enrofloxacin, and cefotaxime in diarrhea-associated isolates were higher than those of asymptomatic isolates. Consistent with the antimicrobial resistance phenotype, diarrheal isolates had a higher prevalence rate to qnrS1, blaTEM-1B and blaCTX-M-27 than asymptomatic isolates. Furthermore, compared with asymptomatic isolates, diarrheal isolates demonstrated a higher pathogenic potential against larvae and mice. Additionally, sequence types (STs) 14179-14181 in E. coli and ST 625 and ST 630-631 in Klebsiella aerogenes were firstly characterized. Our evidence underscores the considerable challenge posed by high rates of bacterial drug resistance in the effective treatment of diarrheal RMs.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Animais , Camundongos , Antibacterianos/farmacologia , Macaca mulatta , Proteus mirabilis/genética , Virulência , Farmacorresistência Bacteriana , Diarreia/veterinária , Testes de Sensibilidade Microbiana
5.
mBio ; 15(3): e0028224, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38385704

RESUMO

The complement system can be viewed as a "moderator" of innate immunity, "instructor" of humoral immunity, and "regulator" of adaptive immunity. While sex is known to affect humoral and cellular immune systems, its impact on complement in humans and rhesus macaques, a commonly used non-human primate model system, has not been well studied. To address this knowledge gap, we analyzed serum samples from 90 humans and 72 rhesus macaques for the abundance and activity of the complement system components. While sequences of cascade proteins were highly conserved, dramatically different levels were observed between species. Whereas the low levels detected in rhesus samples raised questions about the suitability of the test for use with macaque samples, differences in levels of complement proteins were observed in male and female humans. Levels of total and antibody-dependent deposition of C1q and C3b on a glycosylated antigen differed between humans and rhesus, suggesting differential recognition of glycans and balance between classical and alternative activation pathways. Functional differences in complement-mediated lysis of antibody-sensitized cells were observed in multiple assays and showed that human females frequently exhibited higher lytic activity than human males or rhesus macaques, which typically did not exhibit such sex-associated differences. Other differences between species and sexes were observed in more narrow contexts-for only certain antibodies, antigens, or assays. Collectively, these results expand knowledge of sex-associated differences in the complement system in humans, identifying differences absent from rhesus macaques.IMPORTANCEThe complement system is a critical part of host defense to many bacterial, fungal, and viral infections. In parallel, rich epidemiological, clinical, and biomedical research evidence demonstrates that sex is an important biological variable in immunity, and many sex-specific differences in immune system are intimately tied with disease outcomes. This study focuses on the intersection of these two factors to define the impact of sex on complement pathway components and activities. This work expands our knowledge of sex-associated differences in the complement system in humans and also identifies the differences that appear to be absent in rhesus macaques, a popular non-human primate model. Whereas differences between species suggest potential limitations in the ability of macaque model to recapitulate human biology, knowledge of sex-based differences in humans has the potential to inform clinical research and practice.


Assuntos
Proteínas do Sistema Complemento , Imunidade Inata , Animais , Humanos , Masculino , Feminino , Macaca mulatta
6.
Cell ; 187(1): 79-94.e24, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181743

RESUMO

The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs. Structures of the CD4bs nAb bound to HIV-1 Env demonstrated binding angles and heavy-chain interactions characteristic of all known human CD4-mimicking bnAbs. Macaque nAb were derived from variable and joining gene segments orthologous to the genes of human VH1-46-class bnAb. This vaccine study initiated in primates the B cells from which CD4bs bnAbs can derive, accomplishing the key first step in the development of an effective HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS , HIV-1 , Animais , Humanos , Anticorpos Amplamente Neutralizantes , Antígenos CD4 , Moléculas de Adesão Celular , HIV-1/fisiologia , Macaca , Vacinas contra a AIDS/imunologia
7.
J Infect Dis ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261786

RESUMO

Non-human primate models are essential for the development of vaccines and antivirals against infectious diseases. Rhesus macaques are a widely utilized infection model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We compared cellular tropism and virus replication in rhesus macaques inoculated with SARS-CoV-2 via the intranasal route, or via exposure to aerosols. Intranasal inoculation results in replication in the upper respiratory tract and limited lower respiratory tract involvement, whereas exposure to aerosols results in infection throughout the respiratory tract. In comparison to multi-route inoculation, the intranasal and aerosol inoculation routes result in reduced SARS-CoV-2 replication in the respiratory tract.

8.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260273

RESUMO

Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of DNA segments that are identical-by-descent (IBD) yield the most precise estimates of relatedness. Here, we leverage novel methods for estimating locus-specific IBD from low coverage whole genome resequencing data to demonstrate the feasibility and value of resolving fine-scaled gradients of relatedness in free-living animals. Using primarily 4-6× coverage data from a rhesus macaque (Macaca mulatta) population with available long-term pedigree data, we show that we can call the number and length of IBD segments across the genome with high accuracy even at 0.5× coverage. The resulting estimates demonstrate substantial variation in genetic relatedness within kin classes, leading to overlapping distributions between kin classes. They identify cryptic genetic relatives that are not represented in the pedigree and reveal elevated recombination rates in females relative to males, which allows us to discriminate maternal and paternal kin using genotype data alone. Our findings represent a breakthrough in the ability to understand the predictors and consequences of genetic relatedness in natural populations, contributing to our understanding of a fundamental component of population structure in the wild.

9.
J Comp Pathol ; 208: 5-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007889

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a viral pneumonia characterized by acute interstitial pneumonia and diffuse alveolar damage in humans. Non-human primates (NHPs) are widely used as preclinical animal models for vaccine development against SARS-CoV-2. However, the pathological changes in NHPs have been described only in selected facets and inconsistent nomenclature is used, making it difficult to interpret and compare the outcomes between studies. Here, we present a standardized methodology for histopathological evaluation of experimental infection outcomes in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. Evaluation criteria for vascular and epithelial changes in the early (3 days post infection [dpi]) and late (21 dpi) phases of the infection were developed, and a four-grade classification encompassing all the histopathological lung lesions was established. The grades of histopathological lung lesions were higher at 3 dpi compared with 21 dpi in both species of macaques, and there were no statistically significant differences in the grades between the two species at 3 dpi and 21 dpi. This study contextualized the pathological SARS-CoV-2 presentation and standardized the terminology and grading scale for lesion severity to facilitate histopathological examination in the macaque model. By referring to the standardized histopathological criteria and grades proposed here, comparable results with high reproducibility can be obtained in future studies of pathogenicity.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Macaca fascicularis , Macaca mulatta , Reprodutibilidade dos Testes , COVID-19/patologia , COVID-19/veterinária , Pulmão/patologia , Modelos Animais de Doenças
10.
Exp Anim ; 73(1): 20-28, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37460311

RESUMO

Nonhuman primates are important research models for basic vision research, preclinical pathogenesis, and treatment studies due to strong similarities in retinal structure and function with humans. We compared retinal parameters between 10 healthy normal rhesus macaques (Macaca mulatta) and 10 cynomolgus macaques (Macaca fascicularis) by optical coherence tomography and electroretinography. The Heidelberg Spectralis® HRA+OCT and Roland multifocal electrophysiometer were used to analyze retinal morphology, multifocal electroretinograms (mfERGs), and full-field electroretinograms (ff-ERGs). Mean retinal thickness was lowest in the central fovea of macaques and did not differ significantly between species, but the retinal thicknesses of the nerve fiber ganglion cell layer and the inner plexiform layer were significantly different. The amplitude density of the N1 wave was lower in rhesus macaques than in cynomolgus macaques in ring and quadrant areas. Dark-adapted 3.0 oscillatory potentials (reflection of amacrine cell activity) and light-adapted 30-hz flicker ERG (a sensitive cone-pathway-driven response) waveforms of the ff-ERG were similar in both species, while the times to peaks in dark-adapted 0.01 ERG (the rod-driven response of bipolar cells) and dark-adapted 3.0 ERG (combined rod and cone system responses) as well as the implicit times of the a- and b-waves in light-adapted 3.0 ERG (the single-flash cone response) were substantially different. This study provides normative retinal parameters for nonhuman primate research on basic and clinical ophthalmology, as well as a reference for researchers in the appropriate selection of rhesus or cynomolgus macaques as models for ophthalmology studies.


Assuntos
Eletrorretinografia , Retina , Humanos , Animais , Macaca mulatta , Macaca fascicularis , Retina/fisiologia , Eletrorretinografia/métodos , Neurônios
11.
J Immunol Methods ; 525: 113602, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103783

RESUMO

Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells to capture Ig heavy and light chain pairs. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, the nested PCR primer mixes are simplified by employing universal 5' primers, eliminating the need for complex 5' MTPX primer sets. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Macaca mulatta , Anticorpos Monoclonais/genética , Células B de Memória , DNA Complementar
12.
Front Immunol ; 14: 1260377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124734

RESUMO

Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.


Assuntos
Anticorpos Monoclonais , Receptores Fc , Animais , Humanos , Receptores Fc/metabolismo , Macaca mulatta , Células Matadoras Naturais , Análise Multivariada , Análise por Conglomerados
13.
Ecol Evol ; 13(11): e10689, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37937273

RESUMO

Early life adversity predicts shorter adult lifespan in several animal taxa. Yet, work on long-lived primate populations suggests the evolution of mechanisms that contribute to resiliency and long lives despite early life insults. Here, we tested associations between individual and cumulative early life adversity and lifespan on rhesus macaques at the Cayo Santiago Biological Field Station using 50 years of demographic data. We performed sex-specific survival analyses at different life stages to contrast short-term effects of adversity (i.e., infant survival) with long-term effects (i.e., adult survival). Female infants showed vulnerability to multiple adversities at birth, but affected females who survived to adulthood experienced a reduced risk later in life. In contrast, male infants showed vulnerability to a lower number of adversities at birth, but those who survived to adulthood were negatively affected by both early life individual and cumulative adversity. Our study shows profound immediate effects of insults  on female infant cohorts and suggests that affected female adults are more robust. In contrast, adult males who experienced harsh conditions early in life showed an increased mortality risk at older ages as expected from hypotheses within the life course perspective. Our analysis suggests sex-specific selection pressures on life histories and highlights the need for studies addressing the effects of early life adversity across multiple life stages.

14.
Front Cell Neurosci ; 17: 1252782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026701

RESUMO

Introduction: Sevoflurane, one of the most commonly used anesthetic agents in children, may induce neuronal dysfunction and cognitive impairment. Exposure to sevoflurane might induce an imbalance between neural excitation and inhibition which could be a mechanism behind anesthesia-induced cognitive and affective dysfunctions. However, the underlying mechanisms remain unclear. Methods: In this study, we used two rhesus macaques in the control group, and one rhesus macaques in the anesthesia group. We employed single-nucleus RNA sequencing (snRNA-seq) technology to explore alterations in distinct types of inhibitory neurons involved in the long-term cognitive impairment caused by sevoflurane in young macaques. Results: Following sevoflurane treatment, an upregulation was observed in the SST+ inhibitory neuron in the LHX6+ neighborhood in the hippocampus of rhesus macaques. This alteration might impact brain development by influencing interneuron migration and maturation. Additionally, we proposed a novel classification of inhibitory neurons, defined by CNR1 and LHX6 applicable to both humans and macaques. Discussion: Our study proposed a novel classification of inhibitory neurons defined by LHX6 and CNR1, relevant in macaques and humans. We also provide evidence that sevoflurane upregulated the SST+ inhibitory neuron in the LHX6+ neighborhood in the hippocampus of rhesus macaques, which may underlie the potential neurotoxic effects induced by general anesthetics. Our results also offer a more reliable approach for studying the structure and function of the human brain.

15.
Viruses ; 15(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37896817

RESUMO

Approximately 0.7% of infants are born with congenital cytomegalovirus (CMV), making it the most common congenital infection. About 1 in 5 congenitally infected babies will suffer long-term sequelae, including sensorineural deafness, intellectual disability, and epilepsy. CMV infection is highly species-dependent, and the rhesus CMV (RhCMV) infection of rhesus monkey fetuses is the only animal model that replicates essential features of congenital CMV (cCMV) infection in humans, including placental transmission, fetal disease, and fetal loss. Using experimental data from RhCMV seronegative rhesus macaques inoculated with RhCMV in the late first to early second trimesters of pregnancy, we built and calibrated a mathematical model for the placental transmission of CMV. The model was then used to study the effect of the timing of inoculation, maternal immune suppression, and hyper-immune globulin infusion on the risk of placental transmission in the context of primary and reactivated chronic maternal CMV infection.


Assuntos
Infecções por Citomegalovirus , Complicações Infecciosas na Gravidez , Humanos , Lactente , Animais , Feminino , Gravidez , Citomegalovirus , Macaca mulatta , Placenta , Modelos Animais de Doenças , Transmissão Vertical de Doenças Infecciosas
16.
Microbiol Spectr ; : e0052523, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695104

RESUMO

Latent viral reservoir is recognized as the major obstacle to achieving a functional cure for HIV infection. We previously reported that arsenic trioxide (As2O3) combined with antiretroviral therapy (ART) can reactivate the viral reservoir and delay viral rebound after ART interruption in chronically simian immunodeficiency virus (SIV)-infected macaques. In this study, we further investigated the effect of As2O3 independent of ART in chronically SIV-infected macaques. We found that As2O3-only treatment significantly increased the CD4/CD8 ratio, improved SIV-specific T cell responses, and reactivated viral latency in chronically SIVmac239-infected macaques. RNA-sequencing analysis revealed that As2O3 treatment downregulated the expression levels of genes related to HIV entry and infection, while the expression levels of genes related to transcription initiation, cell apoptosis, and host restriction factors were significantly upregulated. Importantly, we found that As2O3 treatment specifically induced apoptosis of SIV-infected CD4+ T cells. These findings revealed that As2O3 might not only impact viral latency, but also induce the apoptosis of HIV-infected cells and thus block the secondary infection of bystanders. Moreover, we investigated the therapeutic potential of this regimen in acutely SIVmac239-infected macaques and found that As2O3 + ART treatment effectively restored the CD4+ T cell count, delayed disease progression, and improved survival in acutely SIV-infected macaques. In sum, this work provides new insights to develop As2O3 as a component of the "shock-and-kill" strategy toward HIV functional cure. IMPORTANCE Although antiretroviral therapy (ART) can effectively suppress the viral load of AIDS patients, it cannot functionally cure HIV infection due to the existence of HIV reservoir. Strategies toward HIV functional cure are still highly anticipated to ultimately end the pandemic of AIDS. Herein, we investigated the direct role of As2O3 independent of ART in chronically SIV-infected macaques and explored the underlying mechanisms of the potential of As2O3 in the treatment of HIV/SIV infection. Meanwhile, we investigated the therapeutic effects of ART+As2O3 in acutely SIVmac239-infected macaques. This study showed that As2O3 has the potential to be launched into the "shock-and-kill" strategy to suppress HIV/SIV reservoir due to its latency-reversing and apoptosis-inducing properties.

17.
Front Immunol ; 14: 1244637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675101

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a S. aureus strain with resistance to beta-lactam antibiotics, making it a global human and veterinary health concern. Specifically, immunosuppressed patients have a remarkably higher risk of clinical MRSA infections with significantly increased rates of prolonged clinical recovery, morbidity, and mortality. The current treatment of choice for MRSA is vancomycin. Importantly, we report the first known vancomycin-resistant S. aureus (VRSA) carriers in a cohort of Mauritian cynomolgus macaques (CM) imported to the Oregon National Primate Research Center (ONPRC), with a MRSA carrier rate of 76.9% (10/13 animals). All MRSA isolates also demonstrated resistance to vancomycin with prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) at 30% (3/10 MRSA-positive CMs) and VRSA at 70% (7/10 MRSA-positive CMs). Additionally, we identified VRSA in a rhesus macaque (RM) housed within the same room as the VRSA-positive CMs and identified a MRSA/VISA carrier rate of 18.8% in RMs (3/16 positive for both MRSA and VISA) in unexposed recently assigned animals directly from the ONPRC RM breeding colony. Considering that the MRSA and VRSA/VISA-positive CMs future study aims included significant immunosuppression, MRSA/VRSA/VISA decolonization treatment and expanded "MRSA-free" practices were employed to maintain this status. We report the first controlled study using in-depth analyses with appropriate diagnostic serial testing to definitively show an MRSA decolonization therapy (90% success rate) and expanded barrier practice techniques to successfully prevent recolonization (100%) of a cohort of CMs MRSA-free (up to 529 days with a total of 4,806 MRSA-free NHP days).


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Macaca fascicularis , Resistência a Vancomicina , Macaca mulatta , Staphylococcus aureus , Vancomicina/farmacologia , Vancomicina/uso terapêutico
18.
Brain Behav Immun Health ; 33: 100683, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37701789

RESUMO

Sleep deprivation in humans is associated with both cognitive impairment and immune dysregulation. An animal model of neuropathogenesis may provide insight to understand the effects of sleep deprivation on the brain. Human neurocognition is more closely mirrored by nonhuman primates (NHP) than other animals. As such, we developed an NHP model to assess the impact of sleep deprivation on neurocognition and markers of systemic immune activation. Six male rhesus macaques underwent three rounds of sleep deprivation (48 h without sleep) at days 0, 14, and 28. We performed domain specific cognitive assessments using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen before and after 24 and 48 h of sleep deprivation. Immune activation markers were measured in the blood by multiplex assay and flow cytometry. Although we observed variability in cognitive performance between the three rounds of sleep deprivation, cognitive impairments were identified in all six animals. We noted more cognitive impairments after 48 h than after 24 h of sleep deprivation. Following 48 h of sleep deprivation, elevations in markers of immune activation in the blood were observed in most animals. The observed impairments largely normalized after sleep. The co-occurrence of systemic immune alterations and cognitive impairment establishes this model as useful for studying the impact of sleep deprivation on neurobehavior and immune perturbations in rhesus macaques.

19.
Microbiol Spectr ; : e0297423, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750731

RESUMO

While skin microbes are known to mediate human health and disease, there has been minimal research on the interactions between skin microbiota, social behavior, and year-to-year effects in non-human primates-important animal models for translational biomedical research. To examine these relationships, we analyzed skin microbes from 78 rhesus macaques living on Cayo Santiago Island, Puerto Rico. We considered age, sex, and social group membership, and characterized social behavior by assessing dominance rank and patterns of grooming as compared to nonsocial behaviors. To measure the effects of a shifting environment, we sampled skin microbiota (based on sequence analysis of the 16S rRNA V4 region) and assessed weather across sampling periods between 2013 and 2015. We hypothesized that, first, monkeys with similar social behavior and/or in the same social group would possess similar skin microbial composition due, in part, to physical contact, and, second, microbial diversity would differ across sampling periods. We found significant phylum-level differences between social groups in the core microbiome as well as an association between total grooming rates and alpha diversity in the complete microbiome, but no association between microbial diversity and measures of rank or other nonsocial behaviors. We also identified alpha and beta diversity differences in microbiota and differential taxa abundance across two sampling periods. Our findings indicate that social dynamics interact with yearly environmental changes to shape the skin microbiota in rhesus macaques, with potential implications for understanding the factors affecting the microbiome in humans, which share many biological and social characteristics with these animals. IMPORTANCE Primate studies are valuable for translational and evolutionary insights into the human microbiome. The majority of primate microbiome studies focus on the gut, so less is known about the factors impacting the microbes on skin and how their links affect health and behavior. Here, we probe the impact of social interactions and the yearly environmental changes on food-provisioned, free-ranging monkeys living on a small island. We expected animals that lived together and groomed each other would have more similar microbes on their skin, but surprisingly found that the external environment was a stronger influence on skin microbiome composition. These findings have implications for our understanding of the human skin microbiome, including potential manipulations to improve health and treat disease.

20.
Neurosci Biobehav Rev ; 153: 105400, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37739326

RESUMO

Several social dimensions including social integration, status, early-life adversity, and their interactions across the life course can predict health, reproduction, and mortality in humans. Accordingly, the social environment plays a fundamental role in the emergence of phenotypes driving the evolution of aging. Recent work placing human social gradients on a biological continuum with other species provides a useful evolutionary context for aging questions, but there is still a need for a unified evolutionary framework linking health and aging within social contexts. Here, we summarize current challenges to understand the role of the social environment in human life courses. Next, we review recent advances in comparative biodemography and propose a biodemographic perspective to address socially driven health phenotype distributions and their evolutionary consequences using a nonhuman primate population. This new comparative approach uses evolutionary demography to address the joint dynamics of populations, social dimensions, phenotypes, and life history parameters. The long-term goal is to advance our understanding of the link between individual social environments, population-level outcomes, and the evolution of aging.


Assuntos
Envelhecimento , Meio Social , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...